Saxon

Progression in Calculation Appendices

Aims

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Introduction

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Strategies for calculation need to be represented by models and images to support, develop and secure understanding. This, in turn, builds fluency. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the methodology.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

Magnitude of Calculations

Year $1-U+U, U+T U$ (numbers up to 20) including adding zero, $U-U, T U-U$ (numbers up to 20) including subtracting zero, $\mathrm{U} \times \mathrm{U}, \mathrm{U} \div \mathrm{U}$

Year 2-TU + U, TU + multiples of 10, TU + TU, U + U + U, TU - U, TU - tens, TU - TU, TU x U, U $\div U$

Year 3 - add numbers with up to three-digits, HTU + multiples of 10 , HTU + multiples of 100, subtract numbers up to three-digits, HTU - U, HTU - multiples of 10, HTU - multiples of 100, HTU - HTU, TU x U, TU $\div U$

Year 4 - add and subtract numbers with up to four-digits, ThHTU + ThHTU, ThHTU - ThHTU, add and subtract decimals with up to two decimal places in the context of money, multiply three numbers together, $T U \times U, H T U \times U, T U \times U$, multiply by zero and one, $T U \div U, H T U \div U$

Year 5 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, ThHTU x U, ThHTU x TU, HTU x TU, multiply whole numbers and decimals with up to three-decimal places by 10, 100 and 1000, divide numbers with up to four-digits by U (including remainders as fractions and decimals and rounding according to the context)

Year 6 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, multiply numbers with up to four-digits by TU, multiply numbers with up to two-decimal places by a whole number, divide numbers up to four-digits by TU (interpreting remainder according to the context), divide decimals up to two-decimal places by U or TU

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. ... pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

National Curriculum 2014

Structuring Learning

Children must have concrete experiences that enable them to create visual images. They should be encouraged to articulate their learning and to become pattern spotters.

Language

bead string
place value apparatus

Numicon

number line

place value counters

Cuisenaire
double sided counters

Structures of Addition (Haylock and Cockburn 2008)

Children should experience problems with all the different addition structures in a range of practical and relevant contexts e.g. money and measurement

Aggregation

Union of two sets

How many/much altogether?
The total

Augmentation

Start at and count on
Increase by

Go up by

Commutative law

Understand addition can be done in any order Start with bigger number when counting on (Explain to children that subtraction does not have this

addend + addend = sum

Structures of Subtraction (Haylock and Cockburn 2008)

Children should experience problems with all the different subtraction structures in a range of practical and relevant contexts e.g. money and measurement

Partitioning

Take away
... how many left?
How many are not?
How many do not?

Comparison

What is the difference?
How many more?
How many less (fewer)?
How much greater?
How much smaller?

Inverse-of-addition

What must be added?
How many (much) more needed?

There are ten pegs on the hanger how many are covered?

Reduction

Start at and reduce by
Count back by
Go down by
(00000-00000-00000-00000-00000-00000

minuend - subtrahend = difference

Structures of Multiplication (Haylock and Cockburn 2008)

Children should experience problems with all the different multiplication structures in a range of practical and relevant contexts e.g. money and measurement

Repeated addition

So many lots (sets) of so many
How many (how much) altogether Per, each

Scaling

Scaling, scale factor Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

Commutative law

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

$\mathbf{a} \mathbf{x} \mathbf{b}$ and $\mathbf{b} \mathbf{x}$ a are equal

4×2 is the same as/equal to 2×4

multiplier x multiplicand = product

A bee has 6 legs. How many legs do 5 bees have?

30: $30=30=30=30=$
$6+6+6+6+6$
(5) \times (6) $=$ (30) Product
Multiplier Multiplicand
Number of sets Amount in each set

Multiplication $4 \times 3=\square \quad 4$ groups of 3
multiplier x multiplicand=product
Karen had 4 bags of apples. multiplier
Each bag had 3 apples. multiplicand
How many apples did she have in all? product

Structures for Division (Haylock and Cockburn 2008)

Children should experience problems with the different division structures in a range of practical and relevant contexts e.g. money and measurement

Equal-sharing

Sharing equally between How many (much) each?

Inverse of multiplication (Grouping)

So many lots (sets/groups) of so many
Share equally in to groups of ... 183

6 equal graps of 3

$=3$

Make 12
Overlay groups of

Ratio structure

comparison
inverse of scaling structure of multiplication scale factor (decrease)

Barney earns three times more than Fred. If
Barney earns $£ 900$ how much does Fred earn?
Jo's journey to school is three times as long as Ella's. If Jo walks to school in 30 minutes how long does it take Ella?

dividend \div divisor $=$ quotient

6-quotient
$4 \longdiv { 2 4 }$ dividend
divisor

Equivalence

$=$
equals
equivalent to
is the same as
is the same amount as
balances
is the same on both sides

What early experiences begin to develop children's ideas of equivalence ?

Equivalence - how is it the same?
One-to-one matching

The property that makes these sets equivalent is their 'threeness'

Exploring equivalence with balance scales

Explore...

$$
\begin{aligned}
& 6 \times \square=2 \times \square \\
& \square \div 4=\square \div 2
\end{aligned}
$$

How can representations support your thinking?

